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It is proved that the pressure varies monotonically along certain sections of bodies and boundaries of flow 

regions, and that the isobars in the flow around convex bodies have no internal branch points (saddle 

points). The method used is the method of isobars, which is based on the fact that the angle of inclination of 

the velocity vector varies monotonically along curves of constant pressure (isobars) [l]. This method has 

been used before to study subsonic vortex flows between a body situated in a supersonic flow and an 

attached or receding shock wave [l-3]. 

1. CONSIDER a two-dimensional symmetrical subsonic vortex flow of gas or incompressible liquid 
around a body ab (see Fig. 1). Viscosity and thermal conduction are ignored and the gas is assumed 
to be polytropic. Throughout, we shall consider only the upper half of the flow, which is symmetrical 
about the x axis. The flow is from left to right, with the flow parallel to the x axis at infinity on the 
left. The pressure p is constant across the flow, but the density p and the magnitude of the velocity 
vector in vortex flow may depend on the stream function JI. The flow is assumed to be without 
separation and without regions with closed streamlines. Finally, when the body ab is in a flow of gas 
we will assume that the Mach number M is less than 1 at all points of the region, i.e. there are no 
local supersonic zones. 

Let us consider a straight segment cd on the body, where the inclination of the wall 8 = 0+ is a 
maximum for the body (more precisely, for its upper half), and a straight segment fg with minimum 
wall inclination 0 = O-. The lengths of these segments may be zero, in which case we will be 
concerned with points at which the wall inclination is a maximum or a minimum. 

For flows satisfying these conditions, one can prove the following theorem. 

Theorem 1. The pressure p decreases (increases) monotonically along the segment of maximum 
(minimum) inclination. 

Indeed, suppose that at some point f of cd the pressure is increasing, i.e. the acceleration at t is 
negative. Consider the isobar leaving the point t. The derivative of the angle of inclination of the 
velocity vector computed along the isobar is [l] 

8,=--p,, (I-M’sin’ @)/(Qq’) 

where p is the angle between the velocity vector and the isobar and p,, is the derivative of p along the 
normal to the isobar (as a point moves along the isobar, the normal points to the left). 
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FIG. 1. 
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FIG.~. 

Following [l-3], making allowance for the existence of branch points [4], we will henceforth 
understand an isobar to be a curve p = const bounding the region in which the pressure is higher or 
lower than at the boundary. That is to say: the continuation of an isobar after a branch point will be 
the branch adjoining the region indicated. For example, in Fig. 2, the isobar at of p = pa, on passing 
through the branch point t, at which pn = 0, must be continued by the branch tb (td) if the bounded 
region is one of higher (lower) pressure, but never by tc. 

With isobars defined in this way, the derivativep, does not change sign as the representative point 
moves along an isobar, so that if MS 1 the angle 0 will vary monotonically along the isobar. This is 
also true for an incompressible liquid, for which the above ratio will have the following form: 

%= -PdW2). 
Taking this into account, we see that along the isobar that leaves a point t the angle 8 increases 

monotonically. Consequently, the isobar cannot reach ab or the axis of symmetry, on both of which 
0G3+; neither can it go to infinity, where 0 = 0. This contradiction proves the first part of the 
theorem. The proof that the pressure increases monotonically along the minimum angle segment is 
analogous. This proves the theorem. 

Note that we are excluding a situation in which the angle 8 may vary by an appreciable amount 
cp 6 27~ along a given isobar, which would permit the isobar to hit the body or the boundary of the 
flow region. Analysis of the curves 0 = const will show that this is possible only if there exist regions 
with closed streamlines and interior stagnation points [2]. The former have already been excluded 
explicitly, the latter are forbidden by the conditions at infinity to the left. Indeed, if there were an 
interior stagnation point between two streamlines, which converged there from infinity on the left, 
there would necessarily exist a streamline leaving the stagnation point and going left to infinity. This 
would contradict the assumption that 0 = 0 at infinity on the left. 

Theorem 1 clearly remains valid if the flow is bounded by a wall at which 0- d 0 G 8+ (flow in a 
symmetrical duct). 

In particular, application of Theorem 1 to a semi-infinite body generated by straight lines implies 
the following conclusions. At rear contours (Fig. 3a) where 0 = 0 for x G 0,O ~0 for 8 6x d 1, along 
a straight wall and along the axis of symmetry at x, > 1, the flow accelerates. At forward contours 
(Fig. 3b, where 8 = 0 for X, >O, 612 0 for - 16x S 0), along a straight wall and along the axis of 
symmetry at x s - 1, the flow decelerates. 

2. We will now consider some conditions on the shape of the body under which the isobars for 
symmetrical flow around the body will have no branch (saddle) points. The question of whether 
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FIG. 3. 
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FIG. 4. 

various singular points do or do not exist is of interest in the theory of liquid and gas flows in other, 
related branches of mathematical physics. Such points are, in particular, those at which both first 
derivatives px and p,, vanish, that is, either points where the pressure is a maximum or branch 
(saddle) points of isobars. In subsonic vortex flows, the first case has been investigated by the 
method of isobars [ 11, and it has been shown that the pressure cannot have an extremum at interior 
points of the flow. The only exceptions are flows with interior stagnation points and closed 
stream1ines-e.g. in asymmetrical flow around a cylinder with high circulation numbers. Later we 
shall present an example of conditions on the shape of the body under which the isobars cannot have 
branch (saddle) points. 

Theorem 2. In symmetrical flow around a convex body, along whose walls the angle 8 cannot 
increase, the isobars can have no branch points inside the flow region (except at the walls of the 
body and on the axis of symmetry). 

PKX$ Let us consider the upper half of the convex body ab {Fig. 4). The angle 8 does not 
increase along ab; along ac we have 8 3 0, and along A-4 d 0. Let t be a branch point of isobars. 
This means, in particular, that the first derivatives of p and 8 with respect to x and y vanish there. 
Depending on the signs of the higher-order derivatives of p at t, an even number of isobars (at least 
four) converge at t, some possibly touching bne another, and the same number of regions (bounded 
by these isobars) meet there. As one describes a circle around t, regions with higher pressure than at 
f alternate with regions of lower pressure. (A situation in which an isobar is the common boundary 
of two regions, each with pressure either higher or lower than along the isobar, cannot occur, 
because when MC 1 the equality p, = 0 may hold only at isolated points.) Accordingly, any isobar 
along which 0 increases as the distance from t increases is followed (in the above sense, as a circle is 
described around the branch point) by an isobar along which 8 decreases. 

Let us assume, to fix our ideas, that 0 = et> 0 at t (the case 8,< 0 is treated similarly). Consider 
two nearby isobars along which 8 increases as the distance from t increases (numbered 1 and 3 in 
Fig. 4). According to the boundary conditions, these isobars may hit the body only at the segment ac 

of the wall along which 0 20. At the points of contact-also numbered 1 and 3-O1 >, O,>,O, 
o3 > 0,2 0. Since the body is convex, e1 > e3 > 8,3 0. Between the above-mentioned isobars there 
must be another isobar, also hitting ac, along which 8 decreases as the distance from c increases. This 
isobar and its point of contact are numbered 2 in Fig. 4. Thus, at point 2, between points 1 and 3, 
8 - O2 < 8, < &. But 8 3 O3 on the convex wall between points 1 and 3, which is a contradiction. This 
completes the proof of the theorem. 

For convex semi-infinite bodies along which 8 L 0, such as that illustrated in Fig. 3(b), it is easy to 

prove that there are no branch points on the axis of symmetry either. 

3. We will now consider a uniform two-dimensional symmetric vortex-free subsonic flow of gas 
around a wedge of finite thickness touching a horizontal wall at its tip (Fig. 5). An important feature 
of this flow is that, however low the (subsonic) velocity of the oncoming flow, a local supersonic 
zone (LSZ) is formed in the neighbourhood of the tip c; its boundary is the sonic line emanating 
from E and a closing shock wave (CSW)- represented in Fig. 5 by a dashed curve and a solid curve, 
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FIG. 5. 

respectively. Note that the flow in the LSZ is fairly complex. Besides a fan-shaped region of 
rarefaction, it may also contain internal shock waves other than the CSW. For our purposes the 
impo~ant point is that the boundary of the LSZ contains part of a shock wave. 

As it turns out, the fact that the pressure is monotonic along the wedge wall nc is related directly 
to the value of the angle 8 along the CSW. We have the following theorem. 

~~eo~e~ 3. If 8 does not exceed the angle of the wedge B. on the CSW (outside the LSZ), then 
the pressure p decreases monotonically along the wedge wall UC (Fig. 5). 

Indeed, suppose that the pressure increases at some point t on ac. Then 8 increases along the 
isobar emanating from t. The Mach number does not increase along the isobar, since the entropy 
does not decrease, and the overall pressure does not increase. Consequently, the isobar can do only 
one thing-hit the CSW. But in that case 0 > t10 at an appropriate point of the CSW, contrary to our 
assumption. 

Even lacking rigorous bounds for 8 on the CSW, it is clearly quite unlikely that @>(I0 on the 
CSW. Consequently, it is equally unlikely that p will vary non-monotonically on ac. This has been 
confirmed by experiment [5], as only monotone variation of p has been observed along the wall of 
the wedge. 

In the case of flat contact of a finite wedge with a horizontal wall, an LSZ may exist whose 
boundary contains no shock segments. In that case one can prove rigorously that the flow is 
monotonic along the wall. 

4. Let us consider a two-dimensional vortex-free flow of gas in a symmetry Lava1 nozzle, whose 
converging section ab (Fig. 6), where 8. (0, is preceded by an infinite straight wall along which 
0 = 0. We shall assume that the converging section is sufficiently smooth, so that to the left of the 
sonic line cd we have h4< 1. 

By the Niko~skii-Taganov Theorem [6], 6~0 at the point c. We can prove the following 
theorem. 

Theorem 4. Along the infinite horizontal wall, the pressure increases monotonically up to the 
point a; along the axis of symmetry, up to the sonic point d, it decreases monotonically. 

Indeed, suppose that at some point ton the straight wall the flow accelerates. Then 8 will increase 
along the isobar leaving that point. Hence the isobar cannot reach as far as the sonic line, on which 
the pressure is less than at t, or to the axis of symmetry or straight wall, on which 0 = 0, or to the 
wall UC, where 8<0. 
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FIG. 6. 
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Similarly one can prove that the pressure decreases monotonically along the axis of symmetry to 
the left of d, completing the proof of the theorem. 

With certain reservations, the theorem carries over to vortex flows. There are two possible cases. 
1. The derivative of the overall pressure is non-negative: dp01d+30, where IJJ is the stream 

function, defined in the usual way. Then MS 1 on the isobar cm emanating from the sonic point c of 
the upper contour. It can be shown that Theorem 3 remains valid for the straight upper wall to the 
left of a and for the axis of symmetry to the left of m. Isobars issuing from the segment md can only 
reach the sonic line cd. Consequently, if the pressure is monotonic along cd, it is also monotonic 
along md. In turn, we observe that when dpOld+ 3 0 the pressure p will vary monotonically along cd 
if each streamline cuts cd only once. 

2. dp,ld$aO. In that case M. < 1 on the isobar dn emanating from the point d, and 8 < 0 at the 
point IZ. Under these conditions Theorem 3 remains completely valid. 

We note that there is a certain analogy between Theorem 1 above and some results for 
two-dimensional irrotational jet flows, for which it has been proved that 0 varies monotonically 
along the free boundary p = const when p takes extremal values on that boundary [7]. Essentially, 
what happens in these results for jets and in Theorem 1 is that p and 8 change places. 

We could have used the maximum principle for 8 in this paper. However, it should be borne in 
mind that the maximum principles for p and 0 in subsonic vortex flows of a gas and an 
incompressible liquid were established by analysing curves p = const and 8 = const along which e 
and p vary monotonically [l]. In addition, even had we used the maximum principle for 8 in 
Theorem 4, it would nevertheless have been necessary to analyse the isobars in order to find bounds 
for 8 on some segments of the boundaries of the regions. 

The authors is indebted to P. I. Plotnikov for useful comments. 
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